Does consensus democracy reduce social inequality?

The question at hand invites us to consider whether democratic institutions, namely those associated with Lijphart’s (2012) distinction between majoritarian and consensus democracy, have an impact on the social inequality of a nation. In order to properly address this question, we must first discuss the conceptualisation and operationalisation that Lijphart uses. This will allow for the discussion of some discrepancies, between how Lijphart conceptualises social inequality as “kinder and gentler” and the variables he uses to operationalise them. This essay will focus on the aspect of gender inequality, as Lijphart himself emphasises it as a key characteristic of consensus democracy. I will argue, that despite the fact that Lijphart provides some solid evidence that consensus democracy reduces social inequality in some aspects such as social welfare, environmental protection, criminal justice and foreign aid, there is no conclusive evidence to show that gender equality is in fact better in consensus democracies, as Lijphart alludes to.

Lijphart highlights the difference between consensus and majoritarian democracy on ten variables. (2010) The first five, the executive-parties dimension, will be used as the operationalisation of consensus democracy. These include measurements of the effective number of parties, cabinet types, election systems, executive dominance over the legislature and interest groups. Lijphart’s conceptualisation of social inequality is less clear. In his attempt to answer the question whether consensus democracy is more “kinder and gentler” (Lijphart, 2012), he does touch on important aspects of social equality. The level of political inclusion and quality of government are certainly part of how we can conceptualise social inequality. Equally Lijphart’s variables of the distribution of wealth in terms of the Gini coefficient, redistribution in the form of public social expenditure, environmental performance, incarceration and foreign aid are valuable components of social equality. However I believe that Lijphart is not exhaustive in his conceptualisation of social inequality.

In this essay I wish to highlight that, despite the fact that Lijphart does concern himself with gender equality and even associates it with consensus democracy, he does not properly conceptualise it. His analysis has a serious shortcomings in regards to his measurements of gender equality.

Gender equality is without doubt an important aspect of social equality. Disparities in chances, both of economic, political and social nature are of grave significance. Especially if the cut cross a society with one half being better off that the other. Furthermore, gender inequality is often a hidden aspect. Many variables that give indications in regards to the wellbeing of societies are used and measured in a gender neutral way, in the assumption that there is no significant difference within the inhabitants of the same household for example. However this certainly is not the case. Even though the last decades have seen significant improvements in the equality of men and women, there are still disparities visible. Most noticeable in the cases of outliers. For the majority of my own analysis, India had to be removed as a drastic outlier, as the country has a worrisome gender equality history.

Lijphart first introduces the idea of gender equality as a part of his discussion on the quality of government. His argument is that women’s representation in parliament and cabinet is a proxy for minority representation in general, as well as an important aspect of women’s equality. (Lijphart, 2012, pp.281) Further he uses the gender inequality index (GII) developed by the United Nations Development Programme (UNDP)—that is based on the human development index (HDI)—to show

<table>
<thead>
<tr>
<th>Table 1: Gender Inequality Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Variables</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Executive-Parties Dimension</td>
</tr>
<tr>
<td>Population in thousands (logged)</td>
</tr>
<tr>
<td>HDI 2010</td>
</tr>
<tr>
<td>Crude Birth Rates (per 1,000)</td>
</tr>
<tr>
<td>Intercept</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Adjusted R²</td>
</tr>
</tbody>
</table>

Notes: *p<0.1; **p<0.05; ***p<0.01; ****p<0.001
the impact of consensus democracy on gender equality. In fact there is strong evidence in favour of the correlation between women’s representation in parliament and cabinet as well as the GII as a result of consensus democracy. (Lijphart, 2012, p.282). Below is an updated version of the regression analysis between Lijphart’s executive-parties dimension and the GII from 2014. I have used the same controlling variables of logged population size in thousands and the HDI as Lijphart. The time periods are the same as used by Lijphart. In addition to those two variables I have also included the controlling variable of crude birth dates per thousand for the year 2014 from the World Bank data set. I believe this is an important controlling variable. In all considerations of gender equality, we must not forget that there is a biological inequality between men and women in regards to giving birth to children. We must acknowledge and account for the fact that women as a group, not necessarily as individuals, may experience pauses to their economic or political careers in order for this to occur. In a progressive society however this should have little impact on the measures of gender equality.

Similar to Lijphart’s analysis, the regression table shows that there is a strong correlation between the GII and the executive-parties dimension. It is statistically significant at the 1% level. Considering the range on the executive-parties is between -1.5 and 1.5 for the data and that gender inequality is measured on a scale from 0 to 1, a negative correlation of 0.0413 is definitely a strong argument in favour of consensus democracies being more socially equal in regards to gender treatment. However, in what follows I will discuss why this analysis by Lijphart cannot be so easily transferred to the concept of gender inequality. Below is a visual representation of the correlation between consensus democracy and the GII.
Transitioning from Lijphart’s discussion of quality on government to the claim that consensus democracy is “kindler and gentler” (2012, p.288) a significant emphasis is given on the fact that consensus democracy manifest itself through a feminine streak. Lijphart argues that his measures for social equality of social welfare, environmental protection, criminal justice and foreign aid (2010, p.288) are the consequences of “strong community orientation and social consciousness.” (Lijphart, 2010, p.287) He associates them with the “feminist conceptions of democracy” that, in the words of Jane Mansbridge lead to “connectedness” and “mutual persuasion” rather than “self-interest and power politics”. (Mansbridge, 1996 cited in Lijphart, 2010, p.287) Lijphart puts forward a strong claim that consensus democracies are favourable to feminist and gender equal policy. He strongly suggests that as a result of the increased women’s representation in government and the better GII results of consensus democracies, consensus democracies lead to more gender equality. However in the following section of this essay I will attempt to show that this is not necessarily the case.

Lijpharts claim is supported by his two regression analysis done on the GII and the women’s representation in parliament and coalitions. To use those two variables as distinct measures for gender equality separately seems somewhat misleading. The GII is composed of three dimensions, female reproductive health, empowerment and labour market participation. Empowerment is measured by the female share in parliamentary representation as well as the female share of attainment of secondary education. (UNDP, Human Development Reports) Therefore one of the components of the GII is in fact on of the other variables that Lijphart uses to show female inclusion in the democratic process. Furthermore female reproductive health is measured by the maternal
mortality rate, something which may in fact be accounted for in life expectancy measure of the HDI, used as a controlling variable for all the regression analysis. The remaining components of the GII is the difference in share of secondary education as well as labour force participation. Labour force participation is an important measure beyond the fact that women are included in the economic activity. It has real implications on the independence as well as gender equality. Iversen and Soskice (2006, p.10) argue that labour force participation has redistributive effects. Women who are active in the workforce (or have been) are entitled to benefits, such as unemployment insurance, health insurance or pensions to which they would otherwise not have access. Therefore we should consider an increased share of labour force participation as a positive contribution to redistribution and gender equality. However what the labour force participation does not capture is the disparity in activity between the genders (full-time, part time, etc.) and the compensation received. No great justification has to be made in favour of the education measure, more equal distribution of education will lead to women having more chances to be successful on a political, economic and social level. In order to see how much impact these two variables have on the outcome of the GII, I have run regressions on the two variables to see if there is a statistically significant correlation with the executive-parties dimension. The boxplots below show that there are significant outliers to the data. In the first case India and Korea, in the second only India.

![Boxplot](image-url)

Difference in Secondary Education and Labour Force Participation between Men and Women
The regression analysis shows that there is no statistically significant correlation between the executive-parties dimension and the share of secondary education or labour force participation. In fact the p values are extremely high. For labour force participation it is even 98.98%. Meaning the null hypothesis, that there is no correlation between the variables, is strongly supported.

We are therefore led to conclude that the female share in parliamentary representation is the driving factor that makes the GII correlate at a statistically significant level with the executive-parties dimension. It is however questionable whether female representation in parliament resembles the gender equality in all social structures. Especially looking at the lack of correlation for labour force participation we would expect that a higher level of parliamentary inclusion may not be a result of a generally higher inclusion of women in the economic and political activity of the country.

An explanation for the higher number of female parliamentary representation of women in consensus democracies may be linked to the institutional elective systems. Consensus democracies are characterised by large district magnitudes, and often list voting, where women may be more likely to be elected than in single member districts of majoritarian system. In majoritarian systems, it may be the case that parties are less likely to nominate a female candidate for parliamentary elections, while in proportional list systems, female candidates will be more likely to appear on the ballot—even when it is only on list places further back—and thus become elected. Therefore it would be premature to accept Lijphart’s suggestion that consensus democracies are advantageous to gender equality based upon the correlation of parliamentary representation and the GII alone. It may simply have to do with the election system independent of the state of gender equality in the county.

The UNDP also releases a gender development index (GDI). It is based upon the same dimensions as the HDI, namely life expectancy, education and gross nation income per capita. However it calculates the values separately for males and females. To receive the GDI, simply the ratio between female
and male HDI is taken. (UNDP, Human Development Reports) Especially in regards to the income, this measure seems to better represent the true gender inequalities between men and women. Instead of simply calculating the labour force participation, it also considers the difference in wage earnings between the genders. The measure of education and health is also included in this measure, although in a different form. Below are the regression results for the GDI. Again the outliers, in this case India at the low end, and Uruguay and Barbados at the high end of the spectrum (with numbers higher than one, indicating that women overall scored better than men on this measure, although it is despite the gender gap in pay, not because of a lack of it) are excluded.

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate (S.E.)</td>
<td>Estimate (S.E.)</td>
<td>Estimate (S.E.)</td>
<td>Estimate (S.E.)</td>
</tr>
<tr>
<td>Executive-Parties Dimension</td>
<td>-0.002545 (0.003108)</td>
<td>-0.0024515 (0.0031738)</td>
<td>-0.0017654 (0.0037679)</td>
<td>-0.0008034 (0.0036007)</td>
</tr>
<tr>
<td>Population in thousands (logged)</td>
<td>0.0005343 (0.0018807)</td>
<td>0.0009137 (0.0021938)</td>
<td>0.0014727 (0.0020964)</td>
<td>0.0012850 (0.0053063)</td>
</tr>
<tr>
<td>HDI 2010</td>
<td></td>
<td>-0.0196539 (0.0559167)</td>
<td>0.0128507 (0.0553063)</td>
<td></td>
</tr>
<tr>
<td>Crude Birth Rates (per 1,000)</td>
<td></td>
<td></td>
<td>0.0019021 (0.009291)</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>0.970530***</td>
<td>0.965622***</td>
<td>0.9786710***</td>
<td>0.9233142***</td>
</tr>
<tr>
<td>N</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>-0.01074</td>
<td>-0.04269</td>
<td>-0.07519</td>
<td>0.03483</td>
</tr>
</tbody>
</table>

Notes: * p<0.1; ** p<0.05; *** p<0.01; **** p<0.001

As can be seen in the regression tables, there is no strong evidence that there is a statistically significant correlation between the GDI and the executive-parties dimension. With a p value of 82% the null hypothesis is far more likely than any alternative hypothesis that there is a correlation. The only statistically somewhat significant variable is the crude birth rates, at 5.05% it barely scraped by the 5% threshold. However even then the correlation is insignificant for our purposes. A further regression analysis on the wage gap between men and women, based on OECD data from 2012 on the median wage, shows that there is equally no correlation to be noticed. The outlier Korea has been removed from the data.

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate (S.E.)</td>
<td>Estimate (S.E.)</td>
<td>Estimate (S.E.)</td>
<td>Estimate (S.E.)</td>
</tr>
<tr>
<td>Executive-Parties Dimension</td>
<td>-0.0374 (1.4158)</td>
<td>-0.9958 (1.4065)</td>
<td>0.9855 (1.4311)</td>
<td>1.1511 (1.7151)</td>
</tr>
<tr>
<td>Population in thousands (logged)</td>
<td>2.6041* (1.0415)</td>
<td>2.5860* (1.0600)</td>
<td>2.6910* (1.2255)</td>
<td></td>
</tr>
<tr>
<td>HDI 2010</td>
<td></td>
<td>-24.5655 (37.7741)</td>
<td>-30.9588 (51.5269)</td>
<td>0.1850 (0.9756)</td>
</tr>
<tr>
<td>Crude Birth Rates (per 1,000)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>13.6563***</td>
<td>-12.4607</td>
<td>9.2624</td>
<td>11.8187</td>
</tr>
<tr>
<td>N</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>-0.0438</td>
<td>0.192</td>
<td>0.1636</td>
<td>0.1099</td>
</tr>
</tbody>
</table>

Notes: * p<0.1; ** p<0.05; *** p<0.01; **** p<0.001

What the lack of correlation suggests is that there is something going on here. Besides the significant correlation for the GII—which I strongly argue is due to the institutional factors of the election system rather than the effect of consensus democracy on gender equality on a whole—none of the variables show any statistical significance. Lijphart definitely presents valid evidence for some of the other variables on social equality. However I believe to have shown that his conceptualisation has
not gone far enough and that his interpretation of the GII and the share of women in parliament is not necessarily indicative of the fact that consensus democracy is improving the gender equality in all aspects of society. Rather it seems that one crucial aspect of social equality, namely gender equality is not positively correlated to consensus democracy as Lijphart suggests.
References Used

Background Resources

fvector <- c(NA,6.1,5.3,NA,7.8,NA,6.4,8.9,9.9,4.2,28.9,4,NA,7.6,5.4,12.7,NA,3.1,3.5,7.3,NA,NA,7.3,4,6.3,12.7,23.5,7.3,4.6,NA,5.1,NA,45.4,46.6,NA,45.2,NA,47.8,NA,47.7,48.7,48.3,40.9,47.9,11.2,NA,10.8,NA,8.2,5.6,9.7,8.4,30.7,8.6,NA,7.7,8.18.5,NA,11.3,27.1,4.6,NA,11.5,4.4,11.8,20.4,12.3,6.4,10,NA,8.9,NA,70.4,80,NA,80.4,NA,67.6,NA,63.2,62.2,78.1,80.5,66.3,67.6,NA,75.1,73.5,77.1,NA,70.3,60.3,83.7,NA,75,70.3,72.5,65.8,77.9,63,80.4,NA,75,NA,NA,38.6,33,NA,31.7,NA,27.7,NA,25.4,16,22.3,37.9,14.5,21.7,31,NA,33.9,15.5,30.4,NA,60.6,29.8,33.7,13.2,21.2,19.46.1,NA,39.3,NA,NA,0.376,0.110,0.053,0.298,0.0,0.129,0.349,0.048,0.075,0.088,0.041,0.146,0.087,0.563,0.113,0.101,0.068,0.430,0.133,0.125,0.100,0.227,0.419,0.062,0.067,0.157,0.111,0.099,0.055,0.028,0.371,0.177,0.313,0.280,-1.3,-0.3,0.0,3.6,1.8,-5.4,-4.2,0.0,0.3,-1.0,0.0,-5.2,-0.7,-7.5,-0.6,-29.6,2.0,-2.9,-9.3,3.8,1.1,-12.1,0.0,-9.7,-8.6,-2.8,0.6,-0.4,-0.5,-6.4,-0.7,-1.6,-1.2,-0.1,4.1,0.3,-27.5,-13.0,-13.1,-10.0,-10.7,-11.8,-9.7,-9.4,-32.4,-7.7,-8.3,-10.9,-12.8,-18.3,-6.9,-52.9,-15.0,-11.2,-19.9,-14.8,-21.6,-22.0,-13.9,-28.4,-30.6,-12.1,-7.5,-11.8,-11.3,-13.3,-7.6,-13.1,-22.5,-13.0,-21.2,-12.6,17.5,12.9,9.6,15.2,12.1,11.1,25.0,10.9,14.8,10.1,10.5,12.4,8.6,8.5,13.4,20.0,14.4,21.3,8.3,13.5,8,0.8,6,10.9,8.8,10.6,10.4,11.5,12.7,7.9,2,11.9,10.2,14.3,12.0,14.3,12.5,NA,13.8,18.2,NA,6.4,NA,1.9,5.1,7.8,11.2,17.7,13.7,13.8,6.9,NA,9.8,NA,8.3,NA,11.1,26.5,36.3,NA,NA,NA,6.4,6.2,16.3,8.6,15.1,1.6,5,NA,17.8,NA,19.1,0.982,0.976,0.943,NA,1.018,0.975,0.982,0.982,0.976,0.977,0.966,0.987,0.963,0.961,1.004,0.975,0.979,0.973,0.971,0.964,0.995,0.961,0.93,0.971,0.937,0.95,0.947,0.996,0.961,0.985,0.975,0.999,0.95,0.985,0.965,1.018,0.995)
dim(fvector) <- c(36, 11)
countries <- c("ARG","AUL","AUT","BAH","BAR","BEL","BOT","CAN","CR","DEN","FIN","FRA","GER","GRE","ICE","IND","IRE","ISR","ITA","JAM","JPN","KOR","LUX","MAL","MAU","NET","NZ","POR","SPA","SWE","SWI","TRI","UK","URU","US")
fdata2 <- data.frame(countries, fvector)
colnames(fdata2) <- cnames
data1 <- read.csv("http://andy.egge.rs/data/L.csv")
data <- merge(data1,fdata2,by="country")
boxplot(data$gender_inequality_index_2014, main="Gender Inequality Index")
plot(data$gender_inequality_index_2014 ~ data$exec_parties_1981, ylab = "Gender Inequality Index", xlab = "Executive-Parties Dimension", main = "Gender Inequality Index plotted \nagainst Executive-Parties Dimension")
abline(lm(data$gender_inequality_index_2014 ~ data$exec_parties_1981))
f51 <- lm(data$gender_inequality_index_2014 ~ data$exec_parties_1981)
summary(f51)

f52 <- lm(data$gender_inequality_index_2014 ~ data$exec_parties_1981 + log(data$pop_in_thousands_2009))
summary(f52)

summary(f53)

summary(f54)

boxplotnames <- c("Secondary Education","Labour Force")

boxplot(data$dif_sec_ed_2005_2014,data$dif_lab_force_participation_rate_2005_2014,
main="Difference in Secondary Education and Labour Force Participation between Men and Women", names = boxplotnames) #outlier IND and KOR, and outlier IND

f3 <- lm(data$dif_sec_ed_2005_2014 ~ data$exec_parties_1981, subset = c(-16,-22))
summary(f3)

f31 <- lm(data$dif_sec_ed_2005_2014 ~ data$exec_parties_1981 + log(data$pop_in_thousands_2009), subset = c(-16,-22))
summary(f31)

summary(f32)

f4 <- lm(data$dif_lab_force_participation_rate_2005_2014 ~ data$exec_parties_1981, subset = c(-16))
summary(f4)

f41 <- lm(data$dif_lab_force_participation_rate_2005_2014 ~ data$exec_parties_1981 + log(data$pop_in_thousands_2009), subset = c(-16))
summary(f41)

summary(f42)

summary(f43)

boxplot(data$gender_development_index) #outliers IND 16, URU 35 and BAR 5
f6 <- lm(data$gender_development_index ~ data$exec_parties_1981, subset = c(-5,-35,-16))
summary(f6)

f61 <- lm(data$gender_development_index ~ data$exec_parties_1981 + log(data$pop_in_thousands_2009), subset = c(-5,-35,-16))
summary(f61)

f62 <- lm(data$gender_development_index ~ data$exec_parties_1981 + log(data$pop_in_thousands_2009) + data$hdi_2010, subset = c(-5,-35,-16))
summary(f62)

f63 <- lm(data$gender_development_index ~ data$exec_parties_1981 + log(data$pop_in_thousands_2009) + data$hdi_2010 + data$crude_birth_rates, subset = c(-5,-35,-16))
summary(f63)

boxplot(data$wage_gap) # outlier Kor at 36.3

f7 <- lm(data$wage_gap ~ data$exec_parties_1981, subset = c(-22))
summary(f7)

f71 <- lm(data$wage_gap ~ data$exec_parties_1981 + log(data$pop_in_thousands_2009), subset = c(-22))
summary(f71)

f72 <- lm(data$wage_gap ~ data$exec_parties_1981 + log(data$pop_in_thousands_2009) + data$hdi_2010, subset = c(-22))
summary(f72)

f73 <- lm(data$wage_gap ~ data$exec_parties_1981 + log(data$pop_in_thousands_2009) + data$hdi_2010 + data$crude_birth_rates, subset = c(-22))
summary(f73)